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Abstract

A heuristic method is proposed to estimate a posteriori that part of the total discretization error which is attributable to
the smoothing effect of added dissipation, for finite volume discretizations of the Euler equations. This is achieved by
observing variation in a functional of the solution as the level of dissipation is varied, and it is deduced for certain test-
cases that the dissipation alone accounts for the majority of the functional error. Based on this result an error estimator
and mesh adaptation indicator is proposed for functionals, relying on the solution of an adjoint problem. The scheme is
considerably implementationally simpler and computationally cheaper than other recently proposed a posteriori error esti-
mators for finite volume schemes, but does not account for all sources of error. In mind of this, emphasis is placed on
numerical evaluation of the performance of the indicator, and it is shown to be extremely effective in both estimating
and reducing error for a range of 2d and 3d flows.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

One of the principal advantages of unstructured mesh methods is the readiness with which the mesh can be
locally refined to suit the solution. The expectation is that by concentrating points in regions of interest,
important flow field features, such as shocks and vortices, can be resolved accurately with significantly less
points than required for a globally finer mesh. However, it is not necessarily the case that adding points locally
will reduce global measures of error. An example of this phenomenon was given by Warren et al. [1], who
examined a high-transonic NACA0012 case with a fish-tail shock structure, where the position of the normal
shock in the fish-tail was of interest. Repeatedly local refining the grid using an indicator based on local gra-
dients of pressure, produced a sequence of estimates for the shock position which converged to value different
from that obtained by globally refining the mesh. Nor is this an isolated example, here a similar result is given
for an unremarkable transonic aerofoil.
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The cause of this effect is simply that the shock position and strength are dependant on the flow else-
where in the field. Errors produced in the discretization upstream of the shock, in smooth regions of the
flow, are convected to the shock and modify it. The regions that produce these errors are not adapted
because the solution is locally smooth, and hence these discretization errors are not reduced. In short:
for hyperbolic problems mesh adaptation is a global problem, and feature-based schemes are almost always
local.

In response to this situation an extremely successful theory of a posteriori error estimation and mesh adap-
tation has been developed in the context of finite element methods [2–8]. Using the adjoint (or dual) problem
to the problem of interest, which serves to relate local errors in the field to the error in a specified functional of
interest J, it is possible to derive exact error representation formulas which have no dependence on the exact
solution of the original problem [9,10]. In practice the functional may be taken to be an engineering quantity
of interest, such as lift or drag. While this theory relies on the Galerkin orthogonality of the finite element
schemes used, currently the dominant methods in use for aerodynamic applications are second-order finite vol-
ume codes, an example of which is applied in this work, the DLR TAU-Code [11,12]. An alternative but
related approach to the same problem which is not considered here is adaptive multiresolution analysis, wherein
a hierarchy of discretizations are examined in order to identify the level of solution resolution required locally
[13–16].

One approach to obtain error representation formulas for finite volume schemes is due to Venditti and Dar-
mofal [17] and Pierce and Giles [18] and recently applied to sonic boom prediction by Jones et al. [19], uses a
globally refined grid to obtain an estimate of the local residual error, which is then related to the functional
error via the adjoint solution. While the method gives an accurate error estimator, there are substantial dif-
ficulties associated with the implementation of such schemes. In particular second-order interpolation of dis-
continuous solutions from coarse grids onto fine grids is needed. Also efficient evaluation of the fine grid
residual without explicit construction and storage of this grid is difficult; explicit storage would represent a
memory bottleneck. These problems come in addition to the problematic issue of robust and efficient solution
of the adjoint equations for viscous flows in complex geometries, which has only recently become tractable
[20–23]. The only application of these techniques to truly complex geometries to date is due to Nemec and
Aftosmis [24] who used a Cartesian mesh method which allows cheap explicit construction of and interpola-
tion onto globally refined grids.

In light of these difficulties an alternative approach was proposed in [25] and is developed further here,
which still requires an adjoint solution, but which is considerably simpler implementationally, as well as being
cheaper to evaluate. We consider the sensitivity of the functional of interest to the level of dissipation intro-
duced by the numerical flux. The particular flux examined is the artificial viscosity scheme due to Jameson
et al. [26], with two parameters kð2Þ and kð4Þ which control respectively the levels of explicitly added second-
and fourth-derivative dissipation. Since the dissipation scales as a power of the mesh spacing h, grid converged
solutions are independent of the dissipation parameters. For finite grids any extant sensitivity corresponds to
numerical errors introduced by the dissipation, and it will be seen how a quantitative error estimate may be
constructed from this information.

In order to illustrate the approach, but without going into detail or providing justification here (which will
be given in Section 4), we present a schematic of the model of error we use in Fig. 1. Broadly, as the level of
dissipation is increased the solution is smoothed increasing the error; as the level of dissipation is reduced
instabilities arise in the solution, usually in the form of high-frequency oscillations, and eventually the scheme
becomes unstable. A desirable and typically used level of dissipation is indicated by the circle, and it our inten-
tion to extrapolate from here onto the zero dissipation limit, thereby approximately eliminating that compo-
nent of error in the solution due to the dissipation.

Further, by regarding kð2Þ and kð4Þ as quantities defined independently at each mesh point, a local measure
of goal function sensitivity is also obtained, which serves as an indicator for mesh refinement. The sensitivities
themselves may be easily and accurately evaluated using an adjoint method, and no interpolation or fine grids
are necessary.

An obvious deficit of this approach is that sources of error other than those due to the dissipation are invis-
ible to the sensor. Therefore, a procedure is developed to numerically estimate a posteriori the proportion of
dissipation error to total discretization error in a functional. In application to 2d and 3d test cases at a variety
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Fig. 1. Schematic of error in solution against level of dissipation.
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of mesh resolutions, always more than 90% of the error in drag is found to be attributable to the smoothing
influence of dissipation.

The performance of the error estimator and indicator in lift and drag, for sub-, trans- and supersonic test-
cases in 2d and 3d is examined. In each case the true error in the functional (measured against reference solu-
tions obtained on uniformly refined grids) is plotted against the number of nodes in the mesh. Feature-based
and global adaptation results are also given for comparison. It is seen in all cases that significantly greater
functional accuracy is achieved with fewer mesh points for error indicator adapted grids, and that the esti-
mated error consistently agrees well with the true error.

2. Discretization of the governing equations

Consider the stationary Euler equations for a compressible fluid in conservative variables w ¼ ðq; qu;
qv; qEÞ, with analytic flux f, on the domain X:
r � f ¼ 0 on X; where f ¼

qu qv

qu2 þ p quv

quv qv2 þ p

quH qvH

2
6664

3
7775; ð1Þ
subject to slip boundary conditions on C the boundary of X. Here q, u, v, p, E and H are the fluid density,
Cartesian velocity components, pressure, total energy and enthalpy respectively. This equation is discretized
with the finite volume method on an unstructured grid with control volumes Xi with inner boundaries Ci:
Z

Xi

r � f dX ’
Z

Ci

f̂ � ndCþ
Z

Cb

f̂ b � ndC ¼ 0; or RðwÞ ¼ 0;
where f̂ and f̂ b are numerical internal and boundary fluxes accounting for discontinuities at control volume
interfaces, and R is the residual. It is well known that f̂ must contain some added dissipation if the discret-
ization is to be stable and capable of capturing shocks, see Section 3.

The flux chosen here is the popular artificial viscosity scheme due to Jameson, Schmidt and Turkel com-
monly called the JST scheme [26], which includes two user-specified parameters that control the level of dis-
sipation. The flux across a grid face fijg with normal vector nij is written
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f̂ ijðwi;wjÞ ¼
1

2
f ðwiÞ þ f ðwjÞ
� �

� nij �
1

2
jkijj eð2Þij fwj � wig � eð4Þij fLjðwÞ � LiðwÞg
h i

; ð2Þ
where jkijj is the maximum convective eigenvalue at the face, and
LiðwÞ ¼
X

j2N ðiÞ
ðwj � wiÞ;
where N ðiÞ is the set of neighbours of i, is an undivided unstructured grid discretization of a second-derivative
(Oðh2Þ, where h is the characteristic mesh spacing), so that (2) takes the form of a central difference of the exact
flux, plus a second- and a fourth-derivative dissipation term. The coefficients eð2Þ and eð4Þ control the relative
levels of these two dissipation terms
eð2Þij ¼ kð2ÞmaxðWi;WjÞUð2Þ; eð4Þij ¼ maxðkð4Þ � eð2Þij ; 0ÞUð4Þ; ð3Þ

based on the shock switch
Wi ¼
P

j2N ðiÞjpj � pijP
j2N ðiÞðpj þ piÞ

: ð4Þ
Some empirically derived corrections for mesh irregularity are contained in Uð2Þ and Uð4Þ. The user-defined
constants kð2Þ and kð4Þ take the default values of 1/2 and 1/64, respectively, and control the absolute levels
of the two types of dissipation. The use of kð4Þ ¼ 1=32 is common for complex geometries and poor quality
grids in order to improve stability.

The shock switch W is designed to be Oð1Þ near regions of large pressure gradient and Oðh2Þ elsewhere.
Hence near a shock eð2Þ � Oð1Þ and eð4Þ ¼ 0, so that the scheme does not attempt to construct a fourth-deriv-
ative using a stencil which crosses a discontinuity. In smooth regions eð2Þ � Oðh2Þ and eð4Þ � Oð1Þ, so that both
second- and fourth-differences are active and of Oðh3Þ. Away from shocks the scheme is therefore second-
order accurate in h as a result of the central difference in (2).

Finally, due to the cell-vertex metric, which results in mesh points lying on the boundary, the boundary
condition may most easily be weakly formulated by setting f̂ b to the analytic flux over the boundary with zero
normal velocity.

3. Review of dissipation in numerical methods

Almost all numerical methods for hyperbolic conservation laws rely on the deliberate addition of dissipa-
tion terms for two distinct purposes: numerical stabilization and discontinuity capturing.

There are a wide variety of ways in which dissipation may be introduced; artificial viscosity schemes (such as
JST and generalizations using matrix coefficients [27]) explicitly add approximations of second- and higher-
order derivative terms to the discretization [26]. Another possibility is upwind schemes, which use physically
motivated weighting of the discretization stencil but may always be rewritten as a central difference plus a dis-
sipation term [28–31]. More sophisticated methods such as streamline-upwind and streamline-upwind Petrov–

Galerkin schemes take advantage of the fact that it is sufficient to add dissipation in the streamwise direction
only [32], which is achieved by using modified the finite element test functions.

Regardless of their various origins these techniques may all be regarded as discretizations of a modified
governing equation [31]. If the original conservation law is written
r � f ðwÞ ¼ 0; ð5Þ

then the continuous equation that is in fact discretized is typically
r � f ðw�Þ ¼ �r2w þ�4r4wþ � � �
� �

; ð6Þ
where the dissipation coefficient � (and optionally �4, etc.) is defined by the particular scheme under consider-
ation. At the very least � should approach zero as the grid spacing h approaches zero, so that in the fine-mesh
limit the influence of the dissipation disappears and the scheme has the potential to be a consistent discreti-
zation of (5). Clearly dissipation has a negative effect on accuracy, and an important aspect of the design
of numerical schemes is the compromise between accuracy and stability.
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Discontinuity capturing requires only that � > 0 in (6), given which (for smooth initial conditions) the solu-
tion w� is smooth for all time and
lim
�!0

w� ¼ w;
where w is here a vanishing viscosity solution of (5). This result together with numerical conservation gives the
property of shock capturing.

The constraints placed by stability on the dissipation are more stringent. Linear stability results based on
Fourier analysis place a non-zero lower bound on the amount of dissipation required for spurious solution
oscillations to be damped. Non-linear analysis gives similar bounds based on reduction of total solution var-
iation [31]. However, such results tend to have a limited validity and usefulness, for example in more than
one dimension the Euler equations do not satisfy any variation diminishing property, and it is difficult to
build total variation diminishing schemes of greater than first-order. As a result, in schemes typically used in
practice (e.g. JST with default coefficients) some low level of spurious oscillation is almost always present
(maybe only visible in entropy), and scheme design is in part a compromise between oscillation and
dissipation.

So we may identify two competing modes of solution error that vary as the dissipation is reduced: error due
to unphysical oscillations which increases, and ‘‘smearing” error due to the introduction of unphysical
entropy, which decreases. A typical example of this trade-off is seen in Fig. 2 for a transonic NACA0012 aero-
foil for the JST scheme with two strong shocks and various values of kð2Þ and kð4Þ. Shown are surface pressure
and entropy distributions, the latter is chosen for its high sensitivity to solution oscillations. In this inviscid
flow entropy should be constant away from shocks, the extent to which it varies is therefore a measure of solu-
tion error. For the default dissipation level the shock is resolved within four mesh points, (as compared to the
theoretical minimum of three mesh points, given no sub-cell resolution). As dissipation is reduced, sharpening
of the shock, amplification of oscillations, and reduction of spurious entropy production near the nose are all
clearly evident.

Finally note that higher dissipation levels often imply a problem which is easier (and cheaper) to solve.
For example the case just presented was solved in about 300, 400 and 1000 multigrid cycles for high, default
and low dissipation levels, respectively. This is of great significance, as the accuracy achieved for a given
computation effort is of more practical interest than the accuracy achieved for a given number of mesh
points.

4. Empirical estimation of error attributable to dissipation

In this section we attempt to quantify for some specific inviscid cases that part of the error in the flow solu-
tion which may be attributed to the smoothing effect of the explicitly added dissipation. In order to do so we
attempt to isolate it from error due to spurious oscillations and error due to all other aspects of the spatial
discretization, in so far as this is possible.

The latter is achieved by varying the level of added dissipation using the coefficients kð2Þ and kð4Þ and extrap-
olating onto the zero dissipation case. This is complicated by the stability limit below which the coefficients
may not be decreased and the increase of oscillation error as dissipation is reduced. In order to milden the
effect of this second problem we regard error in integrated force coefficients, which are less affected by the reg-
ular spurious oscillations than the solution itself.

The purpose of these calculations is two-fold: to demonstrate that the contribution of added dissipa-
tion error, (a) dominates other sources of discretization error in the force coefficients by a wide margin,
and (b) varies approximately linearly with the dissipation coefficients in the range in which we are inter-
ested. Thus the well-known importance of dissipation to solution accuracy is quantified in an empirical
manner.

4.1. A model for dissipation error

Consider an inviscid subsonic NACA0012 aerofoil at an angle of attack of 0� and an onflow Mach number
of 0.5. Under these conditions the exact force coefficients are known and will be used as reference values in the
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Fig. 2. Surface pressure coefficient and entropy for an inviscid transonic NACA0012 on the coarsest grid for a sequence of dissipation
levels. The right-hand plots show a zoom of the main shock.
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following: CD ¼ 0:0, and CL ¼ 0:0 by symmetry. The farfield is at a distance of 100 chord lengths in order to
keep errors due to the finite domain small. The JST scheme is applied, and since the solution is smooth every-
where the shock switch (4) is Oðh2Þ and the added dissipation terms are Oðh3Þ. A sequence of three hierarchi-
cally and globally refined triangular grids are considered. Grid 0 has �5500 nodes, grid 1 �22,000 nodes, and
grid 2 �88,000 nodes.

Despite the absence of shocks small oscillations in the solution exist, and when a sequence of calculations is
performed with progressively reduced values of kð2Þ and kð4Þ these oscillations grow, emanating from the stag-
nation point and trailing edge. In contrast consider the effect on the drag of kð4Þ reduction, plotted in Fig. 3
twice, once on a linear scale, and once on a logarithmic scale. Here the points represent calculations on one of
the three grids with various dissipation coefficients; with kð2Þ ¼ 1

2
, kð4Þ is repeatedly halved until the computa-

tion exhibits strong oscillations. Due to the absence of shocks it is also reasonable to set kð2Þ ¼ 0 and perform
the same procedure.

It is apparent from the graphic that repeatedly halving dissipation causes the drag to appear to converge
roughly linearly to an asymptote at kð4Þ ¼ 0. In fact this asymptote does not exist: the method becomes unsta-
ble before it is reached. Nonetheless the apparent limiting values may be estimated using Richardson extrap-
olation, and these are plotted as horizontal lines on the right-hand plot of Fig. 3. A schematic model of the
sources of error involved has already been presented graphically in Fig. 1 where oscillation error, dissipation
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smoothing error, and the remaining discretization error are distinguished. Here all errors are shown as addi-
tive, but in general they may also cancel.

Extrapolation is therefore valid if the drag error is taken to consist of the two distinct components already
mentioned: oscillation error and smoothing error. If the latter corresponds to the effect of � in the continuous
Eq. (6), then a limit of zero dissipation is reasonable. The extrapolation will then be accurate if, in the region
from which it is performed, the oscillation error is negligible – for example from the circle marked in Fig. 1.

Drag and lift are more suitable for such extrapolation than the solution itself because they exhibit apparent
convergence for much lower values of kð2Þ and kð4Þ. This is a consequence of forces being weighted sums of
surface pressure over the aerofoil. Oscillatory errors then tend to cancel, especially as they are often distin-
guished by a regular odd–even decoupling of the solution at neighbouring mesh points, an example of which
was seen in Fig. 2.

The extrapolated value allows an approximation to that proportion of the error in drag due to the smooth-
ing effects of dissipation to be made. Let J 0 be the exact value of the cost function, J ð4Þ the extrapolated value
as kð4Þ ! 0, and J D the extrapolated value as kð2Þ and kð4Þ simultaneously approach zero ðkð2Þ ! 0Þ alone is not
considered as decreasing second-, increases fourth-dissipation by (3). The total error in a cost function eval-
uation J is
d0 ¼ J � J 0;
while the total dissipation error and kð4Þ error are defined as
dD ¼ J � J D; dð4Þ ¼ J � J ð4Þ;
respectively. Further the complement of dð4Þ in the total dissipation error is defined by
dð2Þ ¼ dD � dð4Þ:
Of particular interest are the proportions of d0 to the three dissipation error terms.
These values for the three cases of Fig. 3 are given in Table 1, where J is evaluated with kð2Þ ¼ 1=2 and both

kð4Þ ¼ 1=32 and 1/64. Firstly, note that the proportions of error due to each type of dissipation are similar for
all three grids, testifying to the reliability of the extrapolation. The fourth-derivative dissipation terms dom-
inate somewhat, as might be expected in a subsonic flow. More surprising is that the dissipation as a whole
completely dominates the total error, accounting for more than 90% in all cases. One particularly striking
manifestation of this result, which is most clearly visible in Fig. 3, is that by eliminating the effect of dissipation



Table 1
Error breakdown of drag for subsonic NACA0012 on three grids obtained by uniform refinement, including proportion of the total error
due to dissipation

Grid kð4Þ d0 (�10�4) dD (�10�4) % dð2Þ=d0 % dð4Þ=d0 % dD=d0

0 32 3.20 3.04 25 70 95
64 4.63 4.31 37 56 93

1 32 0.845 0.828 28 70 98
64 1.17 1.13 38 59 97

2 32 0.307 0.298 21 77 97
64 0.423 0.415 28 68 98
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from CD evaluated on grid 0, we obtain a reduction in the error of a factor of more than 10, roughly equivalent
to the increase in accuracy obtained by globally refining the grid twice.

One unusual feature of the second-order JST scheme is that for smooth solutions the dissipation terms are
both of order h3, while the error due to the central difference of the flux is h2. Therefore, in the limit h! 0 the
error due to the dissipation must become of secondary importance, though this is not yet visible on the grids
considered. The questions arise: at what level of grid resolution (and corresponding level of error) does this
occur, and is this in the range of engineering interest? An accuracy level of practical interest for cases such
as this was recently defined by representatives of the aerospace industry within the European project
ADIGMA (which is concerned with the efficiency of higher-order accurate methods [33]) as �5 drag counts
(�5� 10�4) and �1=2 lift counts (�5� 10�3). Even if we conservatively demand 10 times that accuracy, grid
2 for the subsonic NACA0012 case (with default dissipation coefficients) is sufficient, and for that grid the dis-
sipation contributes all but 1/20th of the error. Hence it is reasonable to expect that for engineering grid res-
olutions dissipation will be the dominant source of error for JST.

It should be noted that there are several schemes that are considered to be superior in accuracy to JST while
comparable in cost, e.g. central schemes with matrix dissipation coefficients [27], CUSP [34,35] and AUSM-
DV [30]. It is to be expected that if a similar analysis were performed on these schemes, the results correspond-
ing to Table 1 would show a somewhat lesser influence of dissipation, negatively affecting the usefulness of a
dissipation error estimator. However – without having investigated this issue numerically – the overwhelming
dominance of dissipation error seen in the above computations suggests that dissipation will play a very sig-
nificant role for these improved fluxes also.

4.2. Dissipation study: transonic ONERA M6 wing

As a more challenging example a three-dimensional transonic case, the ONERA M6 wing at a ¼ 3:06, and
M1 ¼ 0:84 is considered. Surface pressure contours are shown in Fig. 4 where the characteristic lambda shock
structure is visible. Since the surface mesh consists of unstructured triangles there is no opportunity for numer-
ical instability to manifest itself as clean odd–even decoupling as was the case in two-dimensions, though oscil-
lations do occur. Nevertheless Fig. 4 shows clean convergence of CD as the dissipation is reduced, with zero
dissipation asymptotes in close agreement with a reference solution on grid 3, which has � 55� 106 nodes
(grid 0 has � 110� 103 nodes, globally refined grid 1 has � 820� 103 nodes).

As before an error breakdown is computed based on the extrapolated coefficients, Table 2, whereby the
convincing domination of the dissipation error is once again evident, although this time the second-derivate
contributes the largest error as might have been anticipated in this shock-heavy flow. Another difference is the
cancellation of error between the two forms of dissipation on grid 0, and between dissipation and other parts
of discretization error on grids 0 and 1. Nevertheless the convergence of drag with dissipation reduction is
again roughly linear, as can be better seen in Fig. 6 of the following section.

The effect of varying dissipation on the surface pressure is correspondingly dramatic. Pressure and entropy
from a streamwise cut through the wing are plotted in Fig. 5 for a variety of dissipation levels on grid 0, and a
single reference solution on grid 3. Apparent is the very significant improvement in shock sharpness and suc-
tion peak height achieved as dissipation is reduced.
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Dissipation/total drag error breakdown for the transonic ONERA M6 wing
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0 32 11.9 12.9 108 �0.4 108
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5. Application to goal-oriented adaptation

It is our intent to exploit the observations of the previous section for the purposes of improving solution
accuracy. The most immediate approach might be to simply apply the extrapolation used above, and correct
(several) goal functions with the error thereby identified, or possibly correct the entire solution. Because the
dissipation error is a large and roughly constant proportion of the total error, we might expect a significant
improvement in absolute accuracy, although no increase in order of grid convergence. A prime example is the
subsonic NACA0012 of the previous section, in which an error reduction in drag equivalent to solution on
twice globally refined grids was obtained.

However, such a method is likely to prove unreliable in practice. Richardson extrapolation is valid only in
the limit of convergence, and this limit does not exist here because of the instability. Furthermore, such extrap-
olation is extremely sensitive to noise, and that is present in abundance due to spurious oscillations. These are
likely to make correcting an entire solution even more problematic, although a means of eliminating this noise
could make the approach tenable again – one possibility is post-processing with a Gibbs-complementary basis
[36]. The choice of dissipation level sequence, and the necessity for at least three calculations with varying dis-
sipation levels represent final hurdles.

A more robust alternative is to perform a local linearization about an initial solution, and then extrapolate
linearly to a lower (or zero) level of dissipation. This is motivated by the approximately linear behaviour of the
convergence seen in the cases of the previous section, and the observation that at least in the continuous case
described by (6) the solution varies linearly with the level of added dissipation as �! 0.

On this basis we propose a measure for the error in the JST scheme for a goal function J:
g ¼ kð2Þ
dJ

dkð2Þ
þ kð4Þ

dJ

dkð4Þ
; ð7Þ
whereby some means of evaluating the derivatives dJ=dkð2Þ and dJ=dkð4Þ is required.
The accuracy of g as an estimator of dissipation error relies on two opposing effects: (a) the linearity of

the influence of added dissipation, which is satisfied in the low-dissipation limit, and (b) the small magnitude
of oscillation error, which is satisfied in the large-dissipation limit. Any effective numerical flux may be
expected to make a useful compromise between these two limits, and hence will be in a range where the
estimator functions effectively. On the other hand the accuracy of g as an estimator of total discretization
error depends on the extent to which dissipation error dominates other sources. As seen in the previous sec-
tion – at least for integrated forces and the scheme considered – the former does dominate by a significant
margin.

A mesh adaptation indicator for J may now be constructed by considering the influence of local variation
of dissipation level. Let the dissipation coefficients be interpreted as being defined independently for each con-
trol volume,
K ¼ kð2Þi ; kð4Þi : 8i
n o
with the coefficient on a face being an average of immediate neighbours,
kð2Þij ¼
1

2
kð2Þi þ kð2Þj

� �
; kð4Þij ¼

1

2
kð4Þi þ kð4Þj

� �
:

Now dJ=dkð2Þi for example is a measure of the influence of the second-order dissipation in cell i on J, so an
indicator for dissipation-error in J is
ni ¼ kð2Þ
dJ

dkð2Þi

þ kð4Þ
dJ

dkð4Þi

: ð8Þ
The sensitivities of J with respect to all members of the parameter set K are required, and these may be effi-
ciently and accurately evaluated using a discrete adjoint approach, which was developed for sensitivity eval-
uation in gradient based optimization. Implementation details are to be found in [37,23].

Consider the Lagrangian: Lðw;K;wÞ ¼ JðwÞ þ wTRðw;KÞ; which always takes the value J provided the
state equation Rðw;KÞ ¼ 0 is fulfilled. Then for all k 2 K, dJ=dk ¼ dL=dk, so that



Fig. 6.
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dJ
dk
¼ dL

dk
¼ oJ

ow
dw
dk
þ wT oR

ok
þ oR

ow
dw
dk

� 	
ð9Þ

¼ oJ
ow
þ wT oR

ow

� 	
dw
dk
þ wT oR

ok
¼ wT oR

ok
; ð10Þ
whereby the final equality holds if w satisfies the adjoint equation
oR
ow

T

w ¼ �oJ
ow

T

;

which is independent of the choice of variable k 2 K. For a given cost function w must therefore be evaluated
only once in order to calculate the derivatives of J with respect to any number of parameters.

Given w the only additional computation expense in calculating ni is the evaluation of oR=ok, which may be
written down immediately. For kð4Þj for example it is
oRi

okð4Þj

¼

P
m2N ðiÞ

� 1
4
jkimjfLmðwÞ � LiðwÞg j ¼ i;

� 1
4
jkijjfLjðwÞ � LiðwÞg j 2 N ðiÞ;

0 otherwise

8>><
>>:

ð11Þ
and is always of the same order in h as the original dissipation term, so that away from singularities in the
adjoint solution (which occur at sharp trailing edges in 2d transonic flows) the error indicator approaches zero
as the mesh is refined. Treating the second- and fourth-derivative dissipation separately is not necessary, but
the individual sensors offer additional insight into the behaviour of the JST scheme. Future work may consist
in attempts to modify JST based on this analysis.

Note that the relations
X
i

oRi

okð4Þj

¼ 0;
X

j

oRi

okð4Þj

¼ oRi

okð4Þ
;

hold, so that in particular
g ¼
X

i

ni ð12Þ
and the sum of all local error indicators is the total error estimator as expected.
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Verification of gradients with respect to kð2Þ, kð4Þ obtained with adjoint against the results of Section 4, for subsonic NACA0012
nd ONERA M6 (right).
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The error measure for dissipation is closely related to existing error estimators such those of Ohlberger et al.
[38–40], who devise an estimate of solution error in the L1-norm which contains a local dissipation contribu-
tion of the more general form
Fig. 7.
(botto
Qijðwi;wjÞ :¼ 2f̂ ijðwi;wjÞ � f̂ ijðwi;wiÞ � f̂ ijðwj;wjÞ
wi � wj

;

see e.g. [39]. If f̂ is the JST scheme with kð4Þ ¼ 0, then Qij is exactly the coefficient of dissipation across the face
fijg. But kð2ÞdJ=dkð2Þ ¼ kð2ÞwToR=okð2Þ is also the coefficient of dissipation – in this case multiplied by the ad-
joint solution because we are examining the influence on a target functional. Detailed examination of the rela-
tionship of these estimators will be the subject of further work.

The correctness of the implementation may be verified by plotting the calculated gradients of J with respect
to kð2Þ and kð4Þ on the convergence graphs of the previous section. Fig. 6 reproduces the results of Figs. 3 and 4,
with the gradients calculated by adjoint as short bars centered on the calculated points.
Error indicator contours for supersonic NACA0012 drag: pressure (top left), first adjoint variable (top right), kð2Þ, kð4Þ sensitivity
m left, right, respectively). The two sensor plots use the same (logarithmic) scale, where dark regions represent large indicator values.
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The error indicator is briefly examined for an inviscid supersonic NACA0012 case with M1 ¼ 1:5 and
a ¼ 1:0, for which contours of pressure are shown in Fig. 7. The flow is supersonic everywhere expect
for a small region around the stagnation point; as a result information transport is to a large extent uni-
directional and errors produced downstream of the aerofoil do not influence lift or drag. This behaviour
is captured by the adjoint solution (also shown), and is conferred on n. The two terms of the indicator
in (8) are also plotted in Fig. 7, where the relative influence and regional activation of the two dissipation
terms – kð2Þ active near the shock, and kð4Þ partly switched off there – as well as the effect of the adjoint
solution are visible.

The irregularity of the indicator, which is partly due to its necessarily high sensitivity to the grid, demands
that a small amount of smoothing is applied. Here and in the following, two Laplacian smoothing passes with
a coefficient of 0:5 are used. All else being equal, a smooth mesh is likely to give a higher absolute accuracy
than an irregular mesh, as the finite volume method described is quite sensitive to rapid variations in cell size
and irregular cells. However, the indicator also has the effect of damping existing irregularities in the mesh by
identifying regions of low resolution within regions of high resolution and adapting them preferentially. The
quality of the meshes has therefore not been seen to deteriorate significantly in the course of multiple adap-
tation cycles, and the eventual convergence of the iteration is not affected.

6. Numerical results

To quantify the effectiveness of the error indicator and estimator we consider three inviscid NACA0012
aerofoil test-cases: the subsonic, transonic (considered in a similar context by Barth [10]) and supersonic cases
already described. The default levels of second- and fourth-order artificial dissipation are taken, and for each
case we consider both lift and drag adaptation.

We proceed as follows: on an initial mesh a flow solution is computed, followed by an adjoint solution for
J, based on which the indicator and estimator are evaluated. The mesh is refined, whereby the percentage of
new points introduced is fixed at 40% in 2d and 80% in 3d, and a new flow solution is computed, etc. All com-
ponents of this chain are parallelized and no stopping criteria is used, rather the calculation halts when avail-
able computing resources are exhausted.

The mesh is adapted according to an indicator value which is assigned to each edge of the mesh. A thresh-
old value is calculated such that the required percentage of new points is approximately achieved, and the cor-
responding edges are marked for refinement. For example in 2d, triangles with one edge marked are split into
two with a new edge connecting the midpoint of the marked edge with the opposing vertex, and triangles with
all edges marked are divided into four similar triangles. If only two edges of a triangle are marked the third is
also marked, causing refinement in a neighbouring triangle. Mesh coarsening is not allowed.

For the subsonic case the analytic force coefficients are known. To obtain reliable and accurate estimates in
the other cases an initial coarse mesh of 11� 103 points is refined globally five times, resulting in a mesh of
about 11� 106 million points. Where points are added on the aerofoil’s surface, their position is reconstructed
using cubic splines. A flow computation is performed on each of these meshes, and Richardson extrapolation
(on h this time) is applied to the three finest results to estimate the limiting value. This result is used as a ref-
erence solution.

For the purposes of comparison a feature-based adaptation indicator is considered. The idea is that large
errors are made locally where solution gradients are large with respect to the cell spacing. For some flow var-
iable / the indicator on a mesh edge fijg is [41]:
nFB
ij ¼

X
/

x/hqj/j � /ij; ð13Þ
where q P 0 adjusts the rate at which the indicator approaches zero as the mesh is refined, and x/ are constant
flow variable weights. In the following q ¼ 0 and the variables total pressure and total enthalpy are used with
equal weighting.

The mesh convergence for all cases and methods discussed so far is displayed in Fig. 8 where errors are
calculated with respect to the reference solutions. For the error indicator results the error estimate (12) and
the therewith corrected coefficient values are also plotted. Immediately evident is that the feature-based indi-
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cator only converges in the subsonic case, where the problem has an elliptic nature – in the transonic case it
even converges to an incorrect value. Variation in choice of /, q and percentage of new points has no effect
on the character of these results. The poor suitability of standard feature-based indicators for trans- and
supersonic flows is well known, but these findings emphasize the pressing need for a cheap and reliable
alternative.

The dissipation-error adaptation performs consistently well. In the subsonic cases it matches the accu-
racy of feature-based refinement. In all other cases, if the greatest accuracy achieved by global refinement
is regarded, the same error is achieved by error indicator refinement with roughly a factor of 100 fewer
points. Taking into account the expense of the necessary adjoint computation, which is approximately
as costly as the corresponding flow solution, the error indicator method is about 50 times more efficient
than global refinement. In addition to this the error estimates are a good approximation of the actual error
in all cases, and the corrected values are as a consequence consistently more accurate then the uncorrected
values.

The corresponding meshes produced by the two indicators are shown in Fig. 9, and have been chosen to
have similar numbers of points. The feature-based meshes are notable for their smoothness, regularity, and
sharp resolution of shocks, but note that in the supersonic case many points are wasted resolving the fish-tail
shock structure, which can not influence the surface pressure, as already noted. The error indicator meshes are
irregular, but capture the information transport properties of the flow. Finite volume schemes are typically
sensitive to non-smooth meshes, and so the good error reduction results of the indicator come despite its irreg-
ular nature. It is therefore anticipated that additional accuracy may be won by using more sophisticated indi-
cator smoothing.

Given its success the error indicator may be applied to find out where the feature-based indicator is going
wrong. The error indicator evaluated on a five-times feature-based adapted mesh is shown in Fig. 10. At each
adaptation step the two shocks were refined, producing exceptionally high resolution there and much lower
resolution in immediately neighbouring regions. The kð2Þ component of the error indicator is hence small
everywhere, and the indicator structures seen in Fig. 10 are almost entirely from due to the kð4Þ component.
The error indicator would favour a broadening of resolution about the shocks and fewer points inside the
shock, suggesting that the shock position may be in error.
Fig. 9. Meshes for sub-, trans- and supersonic cases using solution gradient adaptation (top), and dissipation-error adaptation for CL

(bottom). All grids have a similar number of points.



Fig. 10. Dissipation-based error indicator on mesh refined using feature-based adaptation. Dark regions represent large indicator values.
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6.1. Adaptation of ONERA M6 Wing

Finally the method is applied in 3d to the ONERA M6 transonic test-case described in Section (4). A new
difficulty encountered in three-dimensions was the robust and smooth reconstruction of the surface of the
wing. The mesh adaptation routines do not at present have the continuous CAD geometry definitions avail-
able to them, and so use a cubic-spline surface reconstruction on the basis of the initial input mesh. Such
reconstruction is difficult to perform accurately and robustly in 3d; as a consequence the algorithm has several
user tuneable parameters, effectively resulting in ambiguity in surface definition. On the basis of two calcula-
tions on a three-times refined mesh with �55 � 106 nodes with different reasonable reconstruction parameters,
a variation of about 0.5 drag counts and 0.05 lift counts was observed. The former is smaller than the observed
discretization error, but the latter is of the same order of magnitude. As a consequence in the following the
reference lift is taken from the finest grid achieved with goal-oriented adaptation on lift. This value lies within
bounds given by the two results on the globally refined mesh.

Convergence results are given in Fig. 11. Horizontal lines mark the engineering accuracy bounds of the
ADIGMA project for drag, and one-tenth the bound for lift (all calculations satisfied the standard lift bound).
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Fig. 11. Convergence of CD (left) and CL (right) for local-gradient and dissipation-error refinement for the ONERA M6 wing. Error
estimator and corrected solution are also plotted.



Fig. 12. ONERA M6 initial, local-gradient, and error indicator (drag) adapted grids cut at y ¼ 6. The two adapted grids have a similar
number of nodes.
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As in 2d, feature-based adaptation performs poorly, and the error indicator significantly better, however par-
ticularly striking is that the corrected coefficient values all lie within the given accuracy bounds, even on the
initial grid – in fact the estimator is most accurate on the initial grid. This may be a consequence of the error
that is estimated, being the same as the error that is reduced by the adaptation. As the adaptation progresses
that part of the error not due to dissipation will eventually dominate. Cuts through the grids obtained with the
two adaptation methods are given in Fig. 12 where the relative irregularity of the grid based on the error indi-
cator is once more evident.

7. Conclusions and further work

The connection between the level of added dissipation in an unstructured finite volume method based on a
JST flux and the solution error, particularly in integrated force coefficients, has been investigated in an a pos-

teriori manner. It has been seen that error due to the smoothing effect of dissipation accounts for at least 95%
of the total error in drag for the two cases and five grids considered. Furthermore, this dissipation error varies
almost linearly with the coefficients kð2Þ and kð4Þ of JST.

Using these observations a practical error estimator and corresponding goal-oriented mesh adaptation indi-
cator have been proposed. Using the derivatives of a goal function with respect to locally defined dissipation
coefficients a measure of the local influence of dissipation is obtained. The resulting method has an overhead
of only a single adjoint solution per adaptation step, in contrast to existing techniques which require addition-
ally a residual evaluation on a globally refined mesh. The scheme has been applied to both lift and drag esti-
mation for a variety of cases in two- and three-dimensions, and functioned extremely accurately and
consistently as both error indicator and total error estimator.

There are several avenues for further investigation. On the theoretical side the relationship to more general
a posteriori error theories [4] demands investigation, as does the validity of the large dissipation error result for
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other numerical fluxes and flow solvers. If a particular flux does not have a parameter controlling dissipation
level (most upwind fluxes), one could be introduced taking a default value of unity, or other parameters such
as Harten fix coefficients, or limiter settings could be examined. The influence of the initial mesh on conver-
gence is an issue of great practical importance, especially given the lack of a mesh coarsening strategy. All ini-
tial meshes considered here are relatively fine, with increased resolution near regions of high surface curvature.
If the adaptation strategy is comparably effective for very poor initial meshes substantial further cost savings
in mesh generation could result.

From the practical point of view the most pressing issue is indicator non-smoothness which is likely to have
an large effect on the results via the grid-sensitivity of the finite volume scheme. The challenge is to find a
smoother which preserves major indicator features as well as the sum of the smoothed values (see (12). Error
estimation for instationary problems will require some separate means of evaluating temporal discretization
error, while the mechanics of mesh adaptation for moving domains has already been examined using gradient
indicators [41].

The method is applicable to Navier–Stokes problems as it stands, given the availability of viscous adjoint
solver and mesh refinement procedure for stretched quadrilateral and triangular cells. It is not anticipated that
the discretization error of the viscous terms will be large, so dissipation error should still dominate, however
whether or not the effect of dissipation will remain approximately linear is an open question.
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